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Abstract

A layer of insulating liquid of dielectric constasg, and average thickness coats a flat surface
at y = 0 at which a 1-dimensional sinusoidal potent&]x,0) =V, cos(m/ p) is applied.

Dielectrophoresis forces create a static undulafmri'wrinkle”) distortion h(x) of periodp at the
liquid/air interface. Analytical expressions haveeh derived for the electrostatic energy and the

interfacial energy associated with the surface latitin whenh(x) =h —1/2Acos(2m/ p) yielding
a scaling relationship fok as a function oh, p, V,, &, and the surface tension. The analysis is
valid asA/p - 0, and in this limit convergence with numericahslation of the system is shown.
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1. Introduction

The action of dielectrophoresis forces on insugatiquids has been used to move and distort liquid
droplets, for example to draw a “finger” of liquidttween co-planar electrodes [1] [2], or to cause
the droplet to wet a solid surface on which theyeaipatterned interdigital array of co-planar
electrodes in order to produce liquid optical desi¢3] [4] [5] [6]. Dielectrophoresis forces arise
dielectric materials that are polarised in regiong/hich there are gradients in the electric figifl

[8]. Such highly non-uniform “fringing” electric éids are created predominantly in the regions
between the coplanar electrodes in these geometries

We have previously shown that an interdigital amégtriped co-planar electrodes can be used to
spread a droplet of oil into a thin uniform filmdathat a static periodic deformation, or wrinkle,
forms on the spread film at the oil/air interfa&g. [The periodp of the wrinkle was found to be
equal to the period of the electrode stripes, wisdmalf of the electrical period since neighbogrin
stripes on the array were oppositely biased atpiels +V, and -V, . The peak to peak amplitude

A of the wrinkle deformation was found to dependrsgty on the magnitude of the potentis}, , |
the average film thickneds, and the pitctp [9].

In the current paper a theoretical model of theesyss developed using the key simplifications that
the potential on the lower boundary of the filmtloé dielectric liquid and the wrinkle deformation
at the liquid/air interface are both a sinusoidahdtion of the spatial coordinate This model
enables analytical expressions to be derived thaidate the dependence of the energy and the
amplitudeA on the key geometric and materials parameters.

2. Numerical simulation

The model geometry that has been investigated asvishn figure 1. This is a 2-dimensional
geometry in thex-y plane which is assumed to be infinite in #hdirection. A layer of insulating
dielectric liquid of average thickness coats the flat solid surface yat 0. The air space above the
liquid continues to infinity in the positiwedirection. A sinusoidal potentidd (x,0) = -V, cos(l/zkx)

is applied at the lower boundary of the liquyds 0, wherek = 2r/p. A sinusoidal distortion with
peak to peak amplitudé is imposed at the liquid/air interface giving ahfim thicknessh(x) as
described by equation [1].

h(x) = h —%Acodgkx) [1]

The choice of the phase of distortion describecetpyation [1] relative to the potential has been
pre-determined from the numerical simulations. fagght of the liquidh(x) is increased above the
positions where there are the highest gradienteeérpotential ak = +%2np wheren is an integer.
Liquid collects in these regions and is removeadnfiihe regions arounk=+np where there is a
reduction inh(x).

The potentiaM (X, y) has been calculated from an iterative numerichitiom of the discretised
form of the Maxwell equation [2] in the half space 0 using standard methods [10].

D-¢,e0V(x,y))=0 2]



whereeg is the dielectric constant obtaining at positignyj, i.e. € = €5 wheny <h(x) ande = &y
when y > h(x). Periodic boundary conditions are applied coningcthe right and left-hand
boundaries in figure 1p(y) = (-p, y). An example potential profilg(x, y) is shown in figure 2 that
was calculated numerically for a liquid with pertivity €, = 8, withh/p=0.5,p = 80um, and
with a sinusoidal liquid/air interfacial distortidar which Ak = 0.5. In practice the calculation must
be performed in a finite region and an upper iaeefwas placed gt= 1( at which the potential
was set at zerd/(x, 10p) = 0 V. The peak voltage was setat= Y@iving a potential of 1.0 V

at (0, 0) and -1.0 V ap( 0)= (-, 0).
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Figure 1. The model geometry. A layer of liquid Figure 2. The potential profile/(x, y) predicted b
average thicknesB coats a flat surface at= 0. the LaPlace equation ca_lculated for a liquid \
The air space continues to infinity. A sinusoi  permittivity €, =8, with h/ p =0.5, p= 80um,
potential V(x,0)=V,cosf/p) is applied aty = 0 and a sinusoidal liquid/air interfacial distortidor
whilst a sinusoidal “wrinkle” distortion of periop which Ak = 0.5 (wherek = 2r7p). The potential wa

is imposed at the liquid/air interface. 1.0V at (0, 0), =1.0 VV ap( 0) and (¢, 0) and eac
equipotential corresponds to a potential chang
0.0tV.

The position of the liquid/air interfade(x) is shown by the thick solid line in figure 2 attte
equipotentials are shown by the thin solid lineasclEequipotential indicates a potential change of
0.05 V relative to its neighbouring equipotentiihe discontinuous changes in direction of the
equipotentials at the liquid/air interface in figu2 are a consequence of the electrostatic boundary
conditions and the mismatch between the dielectitstants of the oikf; = 8 was used to produce
the figure) and airgf, = 1).

In figure 3 the solid line shows a plot of the \alof the potential from figure 2 at a constgnt
position just below the liquid/air interfac¥(x, y = 0.40), as a function of the&-coordinate. The
spatial variation in the potential is adequatelgaided by the sum of a cé&x(2) component and a
cos(&x/2) component shown by the dot-dot-dashed line thedshort-dashed line respectively in
the figure. This observation suggests an analyapairoach in which the potentiglx, y) in the
system is expressed as a series expansion cowtaspatially periodic terms at least to order
cos(&x/2).
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Figure3. The solid line shows the potential at height 0.4 as a function of the-
coordinate from figure 2. The spatial variationtle potential is adequately described by
the sum of a cokk/2) component and a cog2) component shown by the dot-dot-
dashed line and the short-dashed line respectiwgigrek = 2rvp).

3. Electrostatic energy of the system

The potential in the oil layer and the potential tire air region will be described by series
expansions of Fourier modes given in equationsifil [4] respectively. The coefficients of higher
order modes for which > 3 are all zero to first order #k since the periodic potential at the lower
boundary and the deformation at the oil/air integféequation [1]) are both single mode sinusoidal
functions of the coordinate This model system is readily accessible to artalysolution.

V,, (X, y) = Zizlan cogvankx)exp(—Yanky) + Zizlbn cogvankx)explvznky) [3]
V()= ¢, cogankx) exp~Yanky) [4]

where equations [3] and [4] both obey the Maxwejliaion [2]. At the liquid/air interface the
electrostatic boundary conditions obtain that #regéntial component of the electric field and the
normal component of the displacement field must hbotbe continuous,

E.,(xh(x)d=E_(x,h(x)d and ¢, E,(xh(x)MH=¢,E, (xh(x)H respectively, where
E, (x,h(x)) =-0V,, (x,h(x)) and E_ (x,h(x))=-0V,_,(x,h(x)) are the electric fields an
infinitesimal distance below and above the liquidifaterface respectively. The unit normal vector
to the surface and the unit tangent vector at thface are defined by = DS/|DS| andt = 2xA
respectively withz = (0,0,1) and with the distortion of the liquid/air intertale(x) in equation [1] re-
written so that it is in the standard form of thequation of a surface,
S(x,y) =y +¥%Acod2m/ p)-h.

Expressions for the coefficients in equations 3l §4] are derived by matching the electrostatic
boundary conditions at the liquid/air interfage- h(x) and aty = 0 where the spatially periodic
potential vV (x,0) =V, cos(l/zkx) is imposed. The boundary condition at the lowderfiace gives
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a, +b =V,, a,+b, =0, anda, +b, = Q It will be assumed that the peak to peak ampditafithe

wrinkle is small,Ak << 1 , and so exponential terms can be replacethégeries approximation
expk) =1 +x. Equating the coefficients of sine and cosine tethat have the same arguments
yields nine simultaneous equations. These have bekmed to find the nine coefficients of the
Fourier modesy, ay, ag, by, by, bs, €1, ¢; andcs. It is found thata, =0, b, =0 andc, =0due to the
symmetry of the system. Expressions for the othewedficients are given to first order Ak in the
appendix (all orders ofk are retained in the subsequent analysis unlesswite stated). The
coefficientsag, b3 andcz do not contain a constant component that is inadget ofAk since the
3rd Fourier mode arises as a consequence of treerme of the wrinkle deformation at the
liquid/air interface.

The electrostatic energy of the system per unigtleim thez-direction is given by equation [5].

E~E ., pr2mlk 2l k
— _“20%all
W, =—= o[ |

2 -2k

" (Ecy (Eqy Jdyolx - go—zalrj

0 -2k

J::x) (Eair |:HEair)dde [5]

The result of performing the double integrationeiquation [5] to first order irAk is given in
equation [6] whereAe = (g, —¢&,,)/(e,; t€,, ) After performing they-integrations in equation [5]
the exponential terms were replaced with Tayloresegxpansions, using the assumption Akat<
1, before the-integrations were performed.

W, =-

TEotal\, ZK 1-Ae exd— kﬁ)} N 2A82 exd— kﬁ)Ak } 6]

2 °|l1+acexp-kh)) 21+ Acexd-kn)f

In figures 4 and 5 the ratieW, /(e e,VS) is plotted as a function of the parametér(where

k = 2r/p). The solid lines show values calculated from themerical solution of the Maxwell
equation [2] as described in section 2. The dadimed show the predictions of the analytical
expression in equation [6]. The contribution to #tectrostatic energy of the system whdn=0
has been subtracted so that all curves start atribim. In figure 4 curves are shown for the ratio

h/p in the range 0.03 &/ p < 0.5 wheney; = 8.0. In figure 5 curves are shown for the rekati

permittivity of the liquidey; in the range 1.5 &y < 20 whenh /p = 0.25. The values of the ratio
h Ip (figure 4) and; (figure 5) are labelled on the solid line curvesthe numerical solutions.

In figure 4 the deviations between the numericaults (solid lines) and the analytical expression
(dashed lines) is small whdn/p = 0.5, it increases as/p is decreased below this value, reaches a
maximum at intermediate values, and then the dewias small again wheh /p = 0.03. Consider
varying h/ pwith a fixed value ofAk = 0.2. Whenh /p = 0.5 the ratio of the wrinkle amplitude to

the film thickness is small/h = 0.064, the wrinkle is a small perturbation te ghape of the film

layer, and so the analytical expression is a gggafaximation. As the value di/p and thus the
layer thickness is decreased the amplitude of Weidlistortion with a fixed value oAk becomes
more significant with respect to the layer thicks)der exampleh = 0.16 whenh /p = 0.2. This
causes greater disruption to the 2-dimensionalnpialeprofile within and above the oil layer which
is rigorously calculated in the numerical solutimm which leads to greater error in the analytical
linear approximation.
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When the ratich /p is decreased still further this corresponds tagaificant thinning of the oil
layer. For example, ifAk = 0.2 andh /p=0.03 this givesA = 3.2um andh =3.0pm when

p = 100um. Although the relative amplitude of the wrinkke large there is less opportunity to
distort the 2-dimension potential profile withiretbil layer due to the close proximity of the ail/a
interface to the lower boundary at which the po&ns fixed asV(x,0) =V, cos(l/zkx). Note that

the condition A/ h = (Ak)/(2r( h /p)) = 2 corresponds to “punch-through” where the nkie
amplitude relative to the layer thickness is sugfit for the trough in the wrinkle to touch the
substrate surface gt= 0.

The value ofWe shows a minimum fogy; = 1.5 in figure (5). This occurs for all the numcat
solutions if the range &k is extended, and the numerical solutions haveabpéc dependence on
Ak to a good approximation. Intuitively a minimumtire electrostatic energy would be expected at
the value ofA when the normal to the surfageis substantially parallel to the equipotentiakbn
The numerical solutions shown by the solid linggrgsote towards to the corresponding analytical
linear solutions shown by the dashed lines in thet Ak — 0, as expected. In this limit the
gradients of the curves increase monotonicallyieerethe ratioh/ p is decreased or the value of

relative permittivity of the liquid,; is increased.

4. Geometrical and material parameter dependence of the wrinkle amplitude A
The lengthL of the oil-air interface described by the heigimdtionh(x) is calculated using the line
integral given in equation [7] whekk << 1.



2nlk dh(x) orlk dh(x) 4l . ( Ak)
Izn/k ( j J-Zﬂ/k|: 2( dx j :|d _?{ (Tj :l [7]

Minimising the total energy of the systam= Wt + Ws with respect td\ yields equation [8] where
WE is given in equation [6\Ws = YL is the surface free energy per unit length inzk@ection,y is
the surface tension at the liquid/air interface] Aais defined in section 3.

€oCq A€’ exr:(— 27h / p)

A e ncexd-2rb) pf

V2 [8]

The peak to peak amplitudeof the sinusoidal distortion at the liquid/airerfiace is plotted as a
function of the peak voltag¥, of the sinusoidal potential appliedyat O in figures 6 and 7. The
solid lines were calculated from the numerical soluof the Maxwell equation [2] and equation [7]
and the dashed lines show the predictions of tladytcal approximation given by equation [8],

with y = 0.025 N rit andp = 100pum in both cases. In figure 6 curves are shownHerratioh/ p

in the range 0.03 4/ p < 0.5 wheney; = 8.0 and in figure 7 curves are shown for thatied
permittivity of the liquide,; in the range 1.5 &, < 20 whenh/ p = 0.25. The analytical form &
versusV, curves predicted by equation [8] follows a sim@i dependence. The numerical curves
converge towards the corresponding analytical smiatasV, — 0 in figures 6 and 7. In this limit
the gradients of the curves increase monotoniealgither the ratith/ p is decreased or the value

of relative permittivity of the liquid,; is increased, which indicates how the wrinkle atage can
be maximised for a given applied voltage.
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Figure 6. The peak to peak amplituda of the
sinusoidal “wrinkle” distortion as a function of e
peak valueV, of the sinusoidal potential applied
y=0. The solid lines were calculated from

numerical solutia of the Maxwell equation [2] ar
the dashed lines show the predictions of the aical
approximation given by equation [8] w
y=0.025 N rit andp = 100pm. For each value of tt

ratio ﬁ/p the analytical prediction tends to the

corresponding numerical solution in the lirdit - O.

Figure 7. The peak to peak amplitudé of the
sinusoidal “wrinkle” distortion as a function ofe
peak valueV, of the sinusoidal potential applied
y=0. The solid lines were calculated from the
numerical solution of the Maxwell equation [2] ¢
the dashed lines show the predictions of
analytical approximation given by equation [8] w
y=0.025 N rit andp = 100pm. For each value «
the relative permittivity of oiley the analytica
predction tends to the corresponding numer
solution in the limitv, - 0.



The analytical expression in equation [8] was datiusing the assumptigkk << 1 and very close
agreement between the analytical and numericalulegions for the electrostatic energy of the
system (within 1% for example) is found #k = 0.05, as shown in figures 4 and 5. Since figures 6
and 7 were calculated witthn= 100um this value corresponds = 0.8um. The analytical and

numerical predictions agree closely fof p= 0.5 in figure 6 and fog,; = 2.0, 3.0, or 4.0 in figure

7 since the amplitudA remains below jum for the range of voltage shown in the figures.tiie
peak voltage/, is increased and the amplitudeises significantly above dm the value predicted
by the numerical simulations falls below tg dependence. In the high voltage limit\as— o,
which is not shown in figures 6 and 7, the ampkt@doredicted by the numerical simulations (but
not by the analytical expression) asymptotes towénd value at whicie shows a minimum. This

asymptotic value is determined by the particulanbmation of the parametets, p, V, ande,, ,
and not by the value of the surface tension

5. Conclusions and futurework

Equation [8] is valid in the limiAk << 1, but provides useful insight when designimgcfical
devices into the scaling dependences of the andgliad the wrinkleA on the key geometrical and
material parameters. For example, in a diffracliglbt modulation device a relatively small, fixed,
wrinkle amplitude ofA = 0.7—0.9um (depending on the refractive index of the liquad)543 nm
wavelength is required to extinguish the zero ordércoherent light transmitted through a
transparent liquid [5].

In the current paper a sinusoidal deformation suiaeed at the oil/air interface, equation [1], which
is sufficient to describe the interface deformatwwhen the potential at the lower boundary,
V(x,0) =V, cos(l/zkx), is also a single mode sinusoidal function ofdberdinatex. We have shown

that this model system is readily accessible tdyéinal solution. In a practical device a potential
can be applied at the lower boundary of the lidayer using a 1-dimensional array of interdigital
conducting co-planar stripes where neighbouringcteddes are alternately biased [11]. In
discussing particle based DEP applications thenpiale/ (x,0) has been approximated by a series
expansion in this geometry [12] [13]. It has alg®i found that the liquid/air wrinkle deformation
discussed here can show a non-sinusoidal profiexperimental devices when the film thickness

becomes small compared to the pitbhs< p [14].

The current analytical approach could be extendeghtds describing the practical device geometry
by allowing a non-sinusoidal deformation at theailinterface with the inclusion of the next term
in a Fourier series in equation [9] and as wellsiag the Fourier series in equation [10] to sirteula
a more realistic electrode geometry.

h(x) = h—%A codkx)-12A, coq2kx) [9]
V(x,0) = ZV cod¥4ikx) [10]

The 2-dimensional potential&;(x,y) andVai(x,y) should also then be expressed as Fourier series
up to arbitrary order with coefficients determingdboundary conditions for which coefficients of
even terms will be zero due to the symmetry ofdgtem. To first order this model system will
yield an expression fof; with a leading term containing:® (equation [8]) and with additional
terms containing the product$ Vi, wherei =1, 3, 5 ... etc. The expression & will to first
order only have terms with the produdtsVi.; as a result of the symmetry. A non-sinsuoidal
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interface deformation will therefore only arise whbe potential boundary conditidffx,0) is also
non-sinusoidal and the relative size of fewill then be determined solely by the higher freqecy
components of the lower boundary potential and thet fundamental spatial frequency. The
calculation of the tangential and normal componenthe electric fields at the liquid/air interface
in this approach would also enable a descriptiotheftime evolution of the different orders in the
series describing the profil€x).
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Appendix
Expressions are given below for the coefficientshef Fourier modea;, as, by andbs in equation
[3] andc;, andcs in equation [4] to first order iAk.

AT A exy:({ kﬁ)+1V° ¥ 4(AA:Xep)((f( ;ﬁl;i)l)z ARV
I s L D
“ eiA;—+lj%)+1V° ) 4(A£i§f :r—,l)) e
%~ " Hpeexd- sﬁg)e:( i()(_Ail;il(— 3 )+1) o

b, =-a,

. De(De +1)exp- 24h) v,
* 7 dpeexd-kn )+ acexd-3n) ) O
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